Growth, photosynthetic activity and oxidative stress in wheat (Triticum aestivum) after exposure of lead to soil.
نویسندگان
چکیده
The present study was conducted to assess quantitative information about lead (Pb) contamination in soil on the growth and physiology of wheat. Solutions with three different concentrations of Pb as [Pb(NO3)2 at 500, 1000 and 2500 microM] were incorporated into the soil to achieve Pb-stressed conditions in comparison to unstressed, water treated, control variant. Wheat growth measured in terms of root length, shoot length and dry weight exhibited a significant decline with increasing Pb concentrations in the soil. Root and shoot length and seedling weight declined in the range of -23-51, -17-44, and -21-44% in response to 500 to 2500 microM Pb. In addition, there was a significant reduction in the levels of photosynthetic pigments-chlorophyll a (16-66%) and b (10-24%) and total chlorophyll content (by 14-39%) in plants growing in Pb-contaminated soil. It indicated a negative effect on photosynthetic activity in wheat and was confirmed by reduced photochemical efficiency of PSII (Fv/Fm) in the range of - 3-37% in response to 500 to 2500 microM Pb. The reduction in wheat growth in Pb-contaminated soil was accompanied by induction of oxidative stress as indicated by enhanced lipid peroxidation ir. terms of malondialdehyde (MDA) content (by 18-40%) and hydrogen peroxide (H2O2) content (by 34-123%) and alterations in the activity of enzymes, superoxide dismutases (SOD) and guaiacol peroxidases (GPX) in wheat roots. The study concludes that Pb in soil inhibits growth and phototsynthetic activity in wheat through induction of oxidative stress.
منابع مشابه
Effect of salicylic acid Effect of application of salicylic acid and potassium silicate on some morphological, physiological and biochemical traits in wheat (Triticum aestivum L.) grown under salt stress
Water and soil salinity on environmental agents limit plant growth and its productivity in Iran. In order to reduce the adverse effects of salinity on plants, different compounds are used. In this study, the effects of salicylic acid and potassium silicate were investigated on wheat plants under salt stress. A factorial experiment in a randomized complete block was conducted by applying 100 mM ...
متن کاملExogenous Nitric Oxide (NO) Interferes with Lead (Pb)-Induced Toxicity by Detoxifying Reactive Oxygen Species in Hydroponically Grown Wheat (Triticum aestivum) Roots
Nitric Oxide (NO) is a bioactive signaling molecule that mediates a variety of biotic and abiotic stresses. The present study investigated the role of NO (as SNP [sodium nitroprusside]) in ameliorating lead (Pb)-toxicity in Triticum aestivum (wheat) roots. Pb (50 and 250 μM) alone and in combination with SNP (100 μM) was given to hydroponically grown wheat roots for a period of 0-8 h. NO supple...
متن کاملSalt stress effect on wheat (Triticum aestivum L.) growth and leaf ion concentrations
Crops growing in salt-affected soils may suffer from physiological droughtstress, ion toxicity, and mineral deficiency which then lead to reduced growth andproductivity. A pot experiment was conducted to study the effect of differentsalinity levels, i.e. ECe=3 dS m-1 (control), 8, 12 and 16 dS m-1 on wheat grainyield, yield components and leaf ion uptake. Desired salinity levels were obtainedby...
متن کاملThe effect of foliar and soil application of chitosan nanoparticles on chlorophyll, photosynthesis, yield and yield components of wheat (Triticum aestivum L.) under drought stress after pollination
To evaluate the effect of chitosan NPs on wheat under late season drought stress, a factorial experiment was performed based on a randomized complete block design in three replications in pot conditions at Tarbiat Modares University in 2015. The experimental factors included the NPs concentrations (0, 30, 60 and 90 mg.L-1), application methods (foliar and soil application) and irrigation regime...
متن کاملEffect of chitosan on antioxidant enzyme activity, proline, and malondialdehyde content in Triticum aestivum L. and Zea maize L. under salt stress condition
Triticum aestivum L. and Zea maize L. are both sensitive to salinity stress which is a major problem faced by farmers today. In the present study, the effect of chitosan, a biologic elicitor under salinity stress was examined on growth parameters and biochemical markers in maize and wheat s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of environmental biology
دوره 33 2 شماره
صفحات -
تاریخ انتشار 2012